Country for PR: United States
Contributor: PR Newswire New York
Wednesday, July 29 2020 - 02:30
AsiaNet
From the Alzheimer's Association International Conference 2020: a Blood Test for Alzheimer's? Markers for tau Take us a Step Closer
CHICAGO, July 29, 2020 /PRNewswire-AsiaNet/ --

A simple blood test for Alzheimer's would be a great advance for individuals 
with -- and at risk for -- the disease, families, doctors and researchers. 

Logo - https://mma.prnewswire.com/media/1219566/AAIC_2020_Logo.jpg

At the Alzheimer's Association International Conference(R)  ( 
https://c212.net/c/link/?t=0&l=en&o=2868176-1&h=4051985089&u=https%3A%2F%2Fwww.alz.org%2Faaic&a=Alzheimer%27s+Association+International+Conference 
  )(AAIC(R)) 2020, scientists reported results of multiple studies on advances 
in blood "tests" for abnormal versions of the tau protein, one of which may be 
able to detect changes in the brain 20 years before dementia symptoms occur. In 
particular, the reports focus on a specific form of tau known as p-tau217, 
which seems to be the most specific to Alzheimer's and the earliest to show 
measurable changes. 

Changes in brain proteins amyloid and tau, and their formation into clumps 
known as plaques and tangles, respectively, are defining physical features of 
Alzheimer's disease in the brain. Buildup of tau tangles is thought to 
correlate closely with cognitive decline. In these newly reported results, 
blood/plasma levels of p-tau 217, one of the forms of tau found in tangles, 
also seem to correlate closely with buildup of amyloid.

Currently, the brain changes that occur before Alzheimer's dementia symptoms 
appear can only be reliably assessed by positron-emission tomography (PET) 
scans, and from measuring amyloid and tau proteins in spinal fluid (CSF). These 
methods are expensive and invasive. And, too often, they are unavailable 
because they are not covered by insurance or difficult to access, or both.

"There is an urgent need for simple, inexpensive, non-invasive and easily 
available diagnostic tools for Alzheimer's. New testing technologies could also 
support drug development in many ways. For example, by helping identify the 
right people for clinical trials, and by tracking the impact of therapies being 
tested," said Maria C. Carrillo, Ph.D., Alzheimer's Association chief science 
officer. "The possibility of early detection and being able to intervene with a 
treatment before significant damage to the brain from Alzheimer's disease would 
be game changing for individuals, families and our healthcare system."   

A blood test, for example, will enable interpretation and understanding of 
Alzheimer's progression in much larger, more diverse and more robust 
populations.

"While these new reports are encouraging, these are early results, and we do 
not yet know how long it will be until these tests are available for clinical 
use. They need to be tested in long-term, large-scale studies, such as 
Alzheimer's clinical trials," Carrillo added. "In addition, we need to continue 
research to refine and verify the tests that are the current state-of-the-art 
-- including cerebrospinal fluid and PET imaging biomarkers."

Blood P-tau217 Detects Alzheimer's Disease (i.e., Both Plaques and Tangles) 
with High Accuracy
As reported at AAIC 2020, an international team of researchers have identified 
a highly accurate, blood-based biomarker for the detection of Alzheimer's 
disease by measuring levels of p-tau217 in blood, and validated the finding in 
multiple, diverse populations. The scientists found that, "the diagnostic 
precision of blood p-tau217 was as high as established diagnostic methods, 
including positron emission tomography (PET) imaging and cerebrospinal fluid 
biomarkers, which are invasive, costly and less available."

The research team was led by Oskar Hansson, M.D., Ph.D., from Lund University, 
Sweden in coordination with Sebastian Palmqvist, M.D., Ph.D., and Shorena 
Janelidze, Ph.D. from Lund, Eric Reiman, M.D., from Banner Alzheimer's 
Institute, USA, Jeffrey Dage, Ph.D., from Eli Lilly, USA, and other research 
colleagues. The Lund University researchers presented the results at AAIC, and 
they were also published online.

They studied three different cohorts comprising more than 1,400 cases, 
including a large clinic-based study from Sweden (the BioFINDER-2 study), a 
cohort with neuropathological confirmation of Alzheimer's (the Arizona Study of 
Aging and Neurodegenerative Disorders), and a large kindred with 
genetically-caused Alzheimer's (Colombian autosomal-dominant Alzheimer's 
registry).They analyzed other current experimental biomarkers (p-tau217, 
p-tau181, AB42/40 and neurofilament light chain) in both blood and 
cerebrospinal fluid, as well as performed PET imaging for tau and amyloid 
pathology. 

The main finding of the study was that blood p-tau217 could distinguish 
Alzheimer's from other neurodegenerative disorders with diagnostic accuracy 
between 89 and 98 percent. In this study, the p-tau271 assessment was more 
accurate for Alzheimer's than blood-based tests for p-tau181, neurofilament 
light or amyloid beta 42/40 ratio, as well as magnetic re
sonance imaging (MRI). In fact, according to the researchers, performance was 
similar to significantly more costly methods, such as PET imaging and 
cerebrospinal fluid biomarkers.

The researchers also found that p-tau217 analyzed in blood collected during 
life could detect tau brain changes measured in brain tissue analyzed after 
death. These tau brain changes are thought to be related to amyloid plaque 
accumulation. P-tau217 distinguished persons who had plaques and tangles from 
those without Alzheimer's pathology with 89% accuracy, those with plaques and 
more extensive tangles with 98% accuracy, and the outcome of tau PET imaging 
with 93% accuracy.

The p-tau217 levels were increased about seven-fold in Alzheimer's, and, in 
individuals with a gene causing Alzheimer's, the levels started to increase 
already 20 years before onset of cognitive impairment. "This test, once 
verified and confirmed, opens the possibility of early diagnosis of Alzheimer's 
before the dementia stage, which is very important for clinical trials 
evaluating novel therapies that might stop or slow down the disease process," 
Hansson said.

Blood Amyloid and P-tau are Precise Markers of Brain Amyloidosis, Tauopathy 
To advance research on a blood test for Alzheimer's disease, Suzanne Schindler, 
M.D., Ph.D., of Washington University School of Medicine in St. Louis and 
colleagues evaluated the performance of a variety of amyloid and tau measures 
in blood.

Using mass spectrometry, the scientists mapped the blood plasma tau protein and 
compared the results to CSF and PET imaging measures. Compared to the 
better-known tau form p-tau181, they found that p-tau217 was more closely 
linked to build up of amyloid plaques in the brain as measured by a PET scan. 

Additionally, their findings suggest that measuring levels of several different 
forms of p-tau in blood over time may enable clinicians and researchers to 
track the stages of Alzheimer's progression in people living with the disease.

According to the researchers, a blood test for Alzheimer's disease that 
incorporates both amyloid and tau measures may allow earlier and more accurate 
dementia diagnoses not only in research participants but also in clinic 
patients.

The scientists launched the Study to Evaluate Amyloid in Blood and Imaging 
Related to Dementia (SEABIRD) to develop and validate Alzheimer's blood 
biomarkers in a cohort that is more diverse and representative of the greater 
St. Louis region. SEABIRD will enroll more than 1,100 individuals including 
diversity in race, socioeconomic status, medical history and cognitive status.

Plasma P-tau217 is Comparable to P-tau181 for Distinguishing Between 
Alzheimer's and Frontotemporal Lobar Degeneration 
Recent studies have shown that p-tau181 is more than three times as high in 
people with Alzheimer's compared to healthy elderly people or people with a 
neurodegenerative disease known as frontotemporal lobar degeneration (FTLD).  
At AAIC 2020, Elisabeth Thijssen, M.Sc., and Adam L. Boxer, M.D., Ph.D., of the 
UCSF Memory and Aging Center and colleagues reported a comparison of p-tau181 
to a related form of tau called p-tau217 to determine which form can best 
identify people with Alzheimer's.

The retrospective study included 617 participants: 119 healthy controls, 74 
Alzheimer's cases (biomarker-confirmed) and 294 FTLD. In this study group, 
plasma p-tau181 was increased three-fold in people with Alzheimer's compared to 
controls and FTLD. Increase in plasma p-tau217 was even higher; five-fold in 
Alzheimer's compared to healthy controls and four-fold relative to FTLD. The 
plasma comparison results mirrored the findings of tau PET imaging in the 
brain. P-tau181 had a 91% accuracy and p-tau217 had 96% accuracy in predicting 
whether a person had a tau positive brain scan. 

According to the researchers, the study shows that both p-tau217 and p-tau181 
measured in blood are elevated in Alzheimer's, and that measurements closely 
correspond to "gold standard" PET scan results. These blood tests are likely to 
be useful for diagnosing Alzheimer's and as monitoring tools in clinical trials 
to measure treatment effects of new Alzheimer's therapies.

About the Alzheimer's Association International Conference (AAIC) 
The Alzheimer's Association International Conference (AAIC) is the world's 
largest gathering of researchers from around the world focused on Alzheimer's 
and other dementias. As a part of the Alzheimer's Association's research 
program, AAIC serves as a catalyst for generating new knowledge about dementia 
and fostering a vital, collegial research community. 

    -- AAIC 2020 home page: www.alz.org/aaic 
    -- AAIC 2020 newsroom: www.alz.org/aaic/pressroom.asp   
    -- AAIC 2020 hashtag: #AAIC20

About the Alzheimer's Association 
The Alzheimer's Association is a worldwide voluntary health organization 
dedicated to Alzheimer's care, support and research. Our mission is to lead the 
way to end Alzheimer's and all other dementia — by accelerating global 
research, driving risk reduction and early detection, and maximizing quality 
care and support. Visit https://www.alz.org/ or call 800.272.3900. 

    -- Oskar Hansson, PhD, et al. Phospho-tau217 and phospho-tau181 in plasma 
       and CSF as biomarkers for Alzheimer's disease. (Funder(s): Swedish 
       Research Council, the Knut and Alice Wallenberg Foundation, and the 
       Swedish Alzheimer Foundation) 

    -- Shorena Janelidze, PhD, et al. Plasma phospho-tau217 is a potential 
       early diagnostic and prognostic biomarker of Alzheimer's disease. 
        (Funder(s): Swedish Research Council, the Knut and Alice Wallenberg 
       Foundation, and the Swedish Alzheimer Foundation) 

    -- Suzanne Schindler, MD, PhD, et al. Mass spectrometry measures of 
       plasma Aâ, tau and p-tau isoforms relationship to amyloid PET, tau 
       PET, and clinical stage of Alzheimer's disease. (Funder(s): U.S. 
       National Institute on Aging) 

    -- Elisabeth Thijssen, MSc, et al. Comparative diagnostic performance of 
       plasma P-tau217 and P-tau181 in Alzheimer's Disease and Frontotemporal 
       Lobar Degeneration and correlations with [18F]Flortaucipir-PET uptake. 
        (Funder(s): U.S. National Institute on Aging, National Center for 
       Advancing Translational Sciences, Tau Research Consortium)
 
SOURCE  Alzheimer's Association

CONTACT: Alzheimer's Association Media Line, +1.312.335.4078, media@alz.org, or 
AAIC 2020 Press Office, aaicmedia@alz.org 

Translations

Japanese